17 research outputs found

    Transcriptomic and Epigenetic Responses to Environmental Stress in Marine Bivalves with a Focus on Harmful Algal Blooms

    Get PDF
    Global change poses new threats for life in the oceans forcing marine organisms to respond through molecular acclimatory and adaptive strategies. Although bivalve molluscs are particularly tolerant and resilient to environmental stress, they must now face the challenge of more frequent and severe Harmful Algal Blooms (HABs) episodes. These massive outbreaks of microalgae produce toxins that accumulate in the tissues of these filter-feeder organisms, causing changes in their gene expression profiles, which in turn modify their phenotype in order to maintain homeostasis. Such modifications in gene expression are modulated by epigenetic mechanisms elicited by specific environmental stimuli, laying the foundations for long-term adaptations. The present work aims to examine the links between environmental stress in bivalve molluscs (with especial emphasis on Harmful Algal Blooms) and specific epigenetic marks triggering responses through modifications in gene expression patterns. Overall, a better understanding of the molecular strategies underlying the conspicuous stress tolerance observed in bivalve molluscs will provide a framework for developing a new generation of biomonitoring strategies. In addition, this strategy will represent a valuable contribution to our knowledge in acclimatization, adaptation and survival. With that goal in mind, the present work has generated transcriptomic data using RNA-Seq and microarray technologies, facilitating the characterization and investigation of the epigenetic mechanisms used by the Mediterranean mussel Mytilus galloprovincialis during responses to HAB exposure. That information was made publicly available through a specialized online resource (the Chromevaloa Database, chromevaloa.com) assessing the response of chromatin-associated transcripts to Okadaic Acid. Specific epigenetic marks have been assessed under lab-controlled exposure experiments simulating the natural development of the HAB Florida Red Tide (FRT). Results demonstrate a role for the phosphorylation of histone H2A.X and DNA methylation in the response to FRT in the Eastern oyster Crassostrea virginica. Lastly, the study of co-expression networks based on RNA-Seq data series from the Pacific oyster Crassostrea gigas reveals dynamic transcriptomic patterns that vary with time, stressor and tissue. However, consistent functional profiles support the existence of a core response to general conditions of environmental stress. Such response involves metabolic and transport processes, response to oxidative stress and protein repair or disposal, as well as the activation of immune mechanisms supporting a tightly intertwined neuroendocrine-immune regulatory system in bivalves

    Behavioral effects of the neurotoxin Ăź-N-methylamino-L-alanine on the mangrove rivulus (Kryptolebias marmoratus) larvae

    Get PDF
    Mangrove rivulus, Kryptolebias marmoratus, is a hermaphrodite fish capable of self-fertilization. This particularity allows to naturally produce highly homozygous and isogenic individuals. Despite the low genetic diversity, rivulus can live in extremely variable environments and adjust its phenotype accordingly. This species represents a unique opportunity to clearly distinguish the genetic and non-genetic factors implicated in adaptation and evolution, such as epigenetic mechanisms. It is thus a great model in aquatic ecotoxicology to investigate the effects of xenobiotics on the epigenome, and their potential long-term impacts. In the present study, we used the mangrove rivulus to investigate the effects of the neurotoxin ß-N-methylamino-L-alanine (BMAA) on larvae behaviors after 7 days exposure to two sub-lethal concentrations. Results show that BMAA can affect the maximal speed and prey capture (trials and failures), suggesting potential impacts on the organism’s fitness

    Metagenomics, Metatranscriptomics, and Metabolomics Approaches for Microbiome Analysis

    Get PDF
    Microbiomes are ubiquitous and are found in the ocean, the soil, and in/on other living organisms. Changes in the microbiome can impact the health of the environmental niche in which they reside. In order to learn more about these communities, different approaches based on data from mul-tiple omics have been pursued. Metagenomics produces a taxonomical profile of the sample, metatranscriptomics helps us to obtain a functional profile, and metabolomics completes the picture by determining which byproducts are being released into the environment. Although each approach provides valuable information separately, we show that, when combined, they paint a more comprehensive picture. We conclude with a review of network-based approaches as applied to integrative studies, which we believe holds the key to in-depth understanding of microbiomes

    Children’s and adolescents’ rising animal-source food intakes in 1990–2018 were impacted by age, region, parental education and urbanicity

    Get PDF
    Animal-source foods (ASF) provide nutrition for children and adolescents’ physical and cognitive development. Here, we use data from the Global Dietary Database and Bayesian hierarchical models to quantify global, regional and national ASF intakes between 1990 and 2018 by age group across 185 countries, representing 93% of the world’s child population. Mean ASF intake was 1.9 servings per day, representing 16% of children consuming at least three daily servings. Intake was similar between boys and girls, but higher among urban children with educated parents. Consumption varied by age from 0.6 at <1 year to 2.5 servings per day at 15–19 years. Between 1990 and 2018, mean ASF intake increased by 0.5 servings per week, with increases in all regions except sub-Saharan Africa. In 2018, total ASF consumption was highest in Russia, Brazil, Mexico and Turkey, and lowest in Uganda, India, Kenya and Bangladesh. These findings can inform policy to address malnutrition through targeted ASF consumption programmes.publishedVersio

    Incident type 2 diabetes attributable to suboptimal diet in 184 countries

    Get PDF
    The global burden of diet-attributable type 2 diabetes (T2D) is not well established. This risk assessment model estimated T2D incidence among adults attributable to direct and body weight-mediated effects of 11 dietary factors in 184 countries in 1990 and 2018. In 2018, suboptimal intake of these dietary factors was estimated to be attributable to 14.1 million (95% uncertainty interval (UI), 13.8–14.4 million) incident T2D cases, representing 70.3% (68.8–71.8%) of new cases globally. Largest T2D burdens were attributable to insufficient whole-grain intake (26.1% (25.0–27.1%)), excess refined rice and wheat intake (24.6% (22.3–27.2%)) and excess processed meat intake (20.3% (18.3–23.5%)). Across regions, highest proportional burdens were in central and eastern Europe and central Asia (85.6% (83.4–87.7%)) and Latin America and the Caribbean (81.8% (80.1–83.4%)); and lowest proportional burdens were in South Asia (55.4% (52.1–60.7%)). Proportions of diet-attributable T2D were generally larger in men than in women and were inversely correlated with age. Diet-attributable T2D was generally larger among urban versus rural residents and higher versus lower educated individuals, except in high-income countries, central and eastern Europe and central Asia, where burdens were larger in rural residents and in lower educated individuals. Compared with 1990, global diet-attributable T2D increased by 2.6 absolute percentage points (8.6 million more cases) in 2018, with variation in these trends by world region and dietary factor. These findings inform nutritional priorities and clinical and public health planning to improve dietary quality and reduce T2D globally.publishedVersio

    Genome-wide DNA methylation of the liver reveals delayed effects of early-life exposure to 17-α-ethinylestradiol in the self-fertilizing mangrove rivulus

    No full text
    Organisms exposed to endocrine disruptors in early life can show altered phenotype later in adulthood. Although the mechanisms underlying these long-term effects remain poorly understood, an increasing body of evidence points towards the potential role of epigenetic processes. In the present study, we exposed hatchlings of an isogenic lineage of the self-fertilizing fish mangrove rivulus for 28 days to 4 and 120 ng/L of 17-α-ethinylestradiol. After a recovery period of 140 days, reduced representation bisulphite sequencing (RRBS) was performed on the liver in order to assess the hepatic genome-wide methylation landscape. Across all treatment comparisons, a total of 146 differentially methylated fragments (DMFs) were reported, mostly for the group exposed to 4 ng/L, suggesting a non-monotonic effect of EE2 exposure. Gene ontology analysis revealed networks involved in lipid metabolism, cellular processes, connective tissue function, molecular transport and inflammation. The highest effect was reported for nipped-B-like protein B (NIPBL) promoter region after exposure to 4 ng/L EE2 (+ 21.9%), suggesting that NIPBL could be an important regulator for long-term effects of EE2. Our results also suggest a significant role of DNA methylation in intergenic regions and potentially in transposable elements. These results support the ability of early exposure to endocrine disruptors of inducing epigenetic alterations during adulthood, providing plausible mechanistic explanations for long-term phenotypic alteration. Additionally, this work demonstrates the usefulness of isogenic lineages of the self-fertilizing mangrove rivulus to better understand the biological significance of long-term alterations of DNA methylation by diminishing the confounding factor of genetic variability
    corecore